Affiliation:
1. Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, India
Abstract
In Big data domain, platform dependency can alter the behavior of the business. It is because of the different kinds (Structured, Semi-structured and Unstructured) and characteristics of the data. By the traditional infrastructure, different kinds of data cannot be processed simultaneously due to their platform dependency for a particular task. Therefore, the responsibility of selecting suitable tools lies with the user. The variety of data generated by different sources requires the selection of suitable tools without human intervention. Further, these tools also face the limitation of recourses to deal with a large volume of data. This limitation of resources affects the performance of the tools in terms of execution time. Therefore, in this work, we proposed a model in which different data analytics tools share a common infrastructure to provide data independence and resource sharing environment, i.e. the proposed model shares common (Hybrid) Hadoop Distributed File System (HDFS) between three Name-Node (Master Node), three Data-Node and one Client-node, which works under the DeMilitarized zone (DMZ). To realize this model, we have implemented Mahout, R-Hadoop and Splunk sharing a common HDFS. Further using our model, we run [Formula: see text]-means clustering, Naïve Bayes and recommender algorithms on three different datasets, movie rating, newsgroup, and Spam SMS dataset, representing structured, semi-structured and unstructured, respectively. Our model selected the appropriate tool, e.g. Mahout to run on the newsgroup dataset as other tools cannot run on this data. This shows that our model provides data independence. Further results of our proposed model are compared with the legacy (individual) model in terms of execution time and scalability. The improved performance of the proposed model establishes the hypothesis that our model overcomes the limitation of the resources of the legacy model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献