A new spectral coarse-graining algorithm based on K-means clustering in complex networks

Author:

Zeng Lang1,Jia Zhen1ORCID,Wang Yingying1

Affiliation:

1. College of Science, Guilin University of Technology, Guilin 541006, China

Abstract

Coarse-graining of complex networks is one of the important algorithms to study large-scale networks, which is committed to reducing the size of networks while preserving some topological information or dynamic properties of the original networks. Spectral coarse-graining (SCG) is one of the typical coarse-graining algorithms, which can keep the synchronization ability of the original network well. However, the calculation of SCG is large, which limits its real-world applications. And it is difficult to accurately control the scale of the coarse-grained network. In this paper, a new SCG algorithm based on K-means clustering (KCSCG) is proposed, which cannot only reduce the amount of calculation, but also accurately control the size of coarse-grained network. At the same time, KCSCG algorithm has better effect in keeping the network synchronization ability than SCG algorithm. A large number of numerical simulations and Kuramoto-model example on several typical networks verify the feasibility and effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3