Affiliation:
1. Department of Physics, China University of Mining and Technology, Xuzhou, 221008, P. R. China
Abstract
To determine anomalous dynamic scaling of continuum growth equations, López12 proposed an analytical approach, which is based on the scaling analysis introduced by Hentschel and Family.15 In this work, we generalize this scaling analysis to the (d+1)-dimensional molecular-beam epitaxy equations to determine their anomalous dynamic scaling. The growth equations studied here include the linear molecular-beam epitaxy (LMBE) and Lai–Das Sarma–Villain (LDV). We find that both the LMBE and LDV equations, when the substrate dimension d>2, correspond to a standard Family–Vicsek scaling, however, when d<2, exhibit anomalous dynamic roughening of the local fluctuations of the growth height. When the growth equations exhibit anomalous dynamic scaling, we obtain the local roughness exponents by using scaling relation α loc =α-zκ, which are consistent with the corresponding numerical results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献