The influence of titanium dioxide (TiO2) nanoparticles on the structure, optical and dielectric properties of polyvinyl chloride (PVC)

Author:

Ramazanov M. A.1ORCID,Rahimli A. M.1,Hajiyeva F. V.1

Affiliation:

1. Baku State University, Z. Khalilov Street, 23 Baku, AZ1148, Azerbaijan

Abstract

The tendency to improve the properties of insulating materials by incorporating inorganic nanoparticles has become necessary in order to design new insulation systems. In this study, PVC/TiO2-based nanocomposites with different loadings (3, 5 and 10 wt.%) of TiO2 nanoparticles were prepared by the solution mixing method. The morphology of the prepared nanocomposites was studied by Atomic Force Microscope (AFM). Experimentally, it was found that as the concentration increases, the size of the surface structural elements and particle size increases. Photoluminescence (PL) analysis of samples shows improvement compared to the pristine polymer. Furthermore, PL intensity for nanocomposites increases depending on the concentration and saturation occurs at a certain amount of titanium dioxide nanoparticles. The increase in luminescence intensity till a certain nanoparticle content is due to the growth of the luminescent surface area. Further saturation is explained by the increase in particle size with no increase or a slight reduction in surface area. Dielectric properties of nanocomposites were studied. It was found that dielectric permittivity of the materials increases as the nanoparticle volume content increases and it reaches at its highest value for the nanocomposites with 3% nanoparticle content. The optical properties of the polymer and nanocomposite films were studied in the region 200 nm to 600 nm. It was found that the PVC/TiO2 nanocomposites showed enhancement in the absorbance intensities which was more significant for the nanocomposites with higher nanoparticle content compared to the pristine polymer. Furthermore, absorption spectra were used to calculate the optical bandgap of the prepared nanocomposite films and redshift observed in the calculated values of bandgap for nanocomposites. Consequently, it was proved that by incorporating TiO2 nanoparticles into the polymer matrix, the spectral region of the samples can be expanded resulting in broadened application of such systems in various fields of science and technology.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3