Numerical analysis of Bragg grating-based slot-micro-ring coupling resonator system for electromagnetically-induced transparency-like effect

Author:

Zhao C. Y.12ORCID,Chen P. Y.1,Zhang C. M.3

Affiliation:

1. College of Science, Hangzhou Dianzi University, Zhejiang, China

2. State Key Laboratory of Quantum Optics and Quantum Optics, Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, China

3. Nokia Solutions and Networks, Hangzhou, 310053, China

Abstract

We propose a novel bio-sensor structure composed of double sided-wall Bragg gratings and dual-slot-micro-ring waveguides. The slot waveguide is a better choice to interact the bio-material under investigation with the propagating light with in the slot region. The incident light field propagates clockwise through the slot micro-ring resonator, the reflection light field propagates counterclockwise in the slot Bragg grating. By optimizing the geometric parameters of the device, the spectral response is tailored to obtain a sharp resonant peak simulated by the finite- difference time-domain (FDTD) method. The spectrum can be tuned not only by geometrically changing the couple distance in slot Bragg grating resonator, but also by dynamically altering the depth and number of the Bragg grating. Furthermore, the device is easy to yield an extinction ratio of 11 dB, a FWHM of 1.1 nm and a quality factor of [Formula: see text]. The device with a small footprint can enable integration with some photonic devices on a chip and have great promising for applications including tunable sensors, slow-light devices and optical communication.

Funder

National Natural Science Foundation of China

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3