Computational Study of N-Job M-Machine Flow Shop Scheduling Problems: SPT, EDD, NEH, NEH-EDD, and Modified-NEH Algorithms

Author:

Kurniawati Dwi Agustina1,Nugroho Yoga Isnaini1

Affiliation:

1. Industrial Engineering Department, Faculty of Science and Technology, Universitas Islam Negeri Sunan Kalijaga, Jalan Marsda Adisutjipto, Yogyakarta, Indonesia

Abstract

This paper discusses about the flow shop scheduling problems using shortest processing time, earliest due date (EDD), Nawaz, Enscore, and Ham (NEH), NEH-EDD, and modified-NEH methods. The objective of this research is to determine the performance of these methods in minimizing makespan and total tardiness. Processing times and due dates were randomly generated, and computational studies were performed in Microsoft Visual Basic 6.0. The experiments are performed for small and medium data sets. Efficiency index, relative error, and run time measure the performance of each method. Experimental results showed that NEH has the best performance in minimizing the makespan in both data sets; these are 53.35 time unit for small data sets and 83.803 time unit for medium data sets. NEH-EDD has the best performance in minimizing total tardiness with 9.37 time unit for small data sets and 231.02 time unit for medium data sets. Modified-NEH, as the proposed method for minimizing makespan and total tardiness at the same time, has good enough result. For minimizing the makespan, modified-NEH results in 57.15 time unit for small data sets and 88.107 time unit for medium data sets. For minimizing total tardiness, the modified-NEH results in 14.21 time unit for small data sets and 246.57 time unit for medium sets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3