Experimental Investigation for the Multi-objective Optimization of Machining Parameters on AISI D2 Steel Using Particle Swarm Optimization Coupled with Artificial Neural Network

Author:

Gopan Vipin1,Wins K. Leo Dev1,Evangeline Gecil1,Surendran Arun2

Affiliation:

1. Karunya School of Mechanical Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India

2. Trinity College of Engineering, Trivandrum 695528, Kerala, India

Abstract

High Carbon High Chromium (or AISI D2) Steels, owing to the fine surface finish they produce upon grinding, find lot of applications in die casting. Machining parameters affect the surface finish significantly during the grinding operation. In this context, this work puts an effort to arrive at the optimum machining parameters relating to fine surface finish with minimum cutting force. The material removal caused by the abrasive grinding wheel makes the process a very complex and nonlinear machining operation. In many situations, traditional optimization techniques fail to provide realistic optimum conditions because of the associated complexity. In order to overcome this issue, particle swarm optimization (PSO) coupled with artificial neural network (ANN) is applied in this research work for parameter optimization with the objective of achieving minimum surface roughness and cutting force. The machining parameters selected for the investigation were table speed, cross feed and depth of cut and the responses were surface roughness and cutting force. ANNs, inspired from biological neural networks, are well capable of providing patterns, which are too complex in behavior. The ANN model developed was used as the fitness function for PSO to complete the optimization. Optimization was also carried out using conventional response surface methodology-genetic algorithm (RSM-GA) approach in which regression equation developed with RSM was considered as the fitness function for GA. Confirmatory experiments were conducted and the comparison showed that PSO coupled with ANN is a reliable tool for complex optimization problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3