Microstructural Characterization and Wear Studies of T6 Heat-Treated A6082 Composite Reinforced with Yttria-Stabilized Zirconia

Author:

Madhukumar K.12ORCID,Balakumar G.12ORCID,Chikkanna N.23ORCID,Thyagaraj N. R.24ORCID

Affiliation:

1. R & D Centre, Department of Mechanical Engineering, Sir M Visvesvaraya Institute of Technology, Bengaluru, Karnataka 562157, India

2. Visvesvaraya Technological University, Belagavi, Karnataka 590018, India

3. Department of Aerospace Propulsion Technology, Visvesvaraya Institute of Advanced Technology, Muddenahalli, Chickballapur, Karnataka 562101, India

4. Mechanical Engineering Department, SJC Institute of Technology, Chickballapur, Karnataka 562101, India

Abstract

This study focused on investigating the wear properties of a T6 heat-treated A6082 composite reinforced with Yttria-stabilized zirconia (YSZ). The primary objective was to assess how the reinforcement and heat treatment affected the wear parameters of the composite material. The base material chosen for the composite was A6082 alloy, which possesses excellent mechanical and tribological qualities. YSZ, known for its high hardness and wear resistance, was selected as the reinforcing phase. The T6 thermal treatment was applied to the A6082 composite to enhance its mechanical properties and induce precipitation hardening. To evaluate the wear characteristics of the composite, a pin-on-disc tribometer was utilized. This test setup represents real-world sliding contact conditions that the composite material might encounter. Several parameters were measured during the wear testing, including wear loss, friction coefficient, and wear mechanism, to assess the composite’s durability under abrasion. The results of the study demonstrated that increasing the YSZ concentration in the base alloy led to a reduction in material loss and friction coefficient. This improvement can be attributed to the hardness and wear-resistant properties of YSZ. The addition of YSZ reinforcement significantly enhanced the wear resistance of the T6 heat-treated A6082 composite. Furthermore, the T6 heat treatment process also improved the wear properties of the composite. Precipitation hardening occurred, resulting in improved mechanical qualities such as strength and hardness, ultimately leading to increased wear resistance. Microscopic analysis of the worn surfaces revealed that the wear mechanism of the composite shifted from severe abrasive wear to moderate adhesive wear after undergoing the T6 heat treatment. The transformation in wear mechanism is believed to be facilitated by the formation of strengthening precipitates during the heat treatment. These precipitates limited the amount of material lost during the wear test, thereby decreasing both material loss and friction coefficient. In summary, this study demonstrates that the addition of YSZ reinforcement and the T6 heat treatment process effectively enhance the wear properties of the A6082 composite. The presence of YSZ reduces material loss and friction coefficient, while the T6 heat treatment produces precipitation hardening, leading to improved wear resistance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3