Integrated Methodology of Soft Computing for Process Modeling and Optimization of Duplex Turn Cutting of Titanium Alloy

Author:

Yadav Ravindra Nath1

Affiliation:

1. Department of Mechanical Engineering, BBD National Institute of Technology and Management, Lucknow 226018, India

Abstract

Duplex turning (DT) is a novel concept of metal cutting where two tools are employed to cut the objects in lieu of single tool. It shows many benefits over conventional turning in terms of superior dynamic balancing, lower cutting forces and tool wears, better surface finish, reduction in vibration with additional support for workpiece. It is a complex method and the resulting experimental analysis becomes difficult and expensive. In such conditions, modeling techniques show their potential for parametric study, prediction of data for optimization and selection of optimal condition. Generally, soft computing-based Artificial Neural Network (ANN) is applied for modeling and prediction for complicated processes while Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) shows their potential for optimization of complex problems over Genetic Algorithm. Therefore, ANN and NSGA-II techniques are employed for modeling and optimization of DT process to minimize the surface roughness and cutting forces (primary and secondary). Finally, results reflect that ANN efficiently predicts the responses at different input combinations within training data set with absolute percentage errors as 2.55% for roughness, while 3.05% and 3.14% for cutting forces (primary and secondary), respectively. In the same way, optimized results also found within the range of acceptability with percentage errors as 2.57% for roughness, while 3.25% and 3.15% for primary and secondary forces, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3