Affiliation:
1. Department of Mechanical Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA
Abstract
In the automotive industry, sealing quality between two flat joint surfaces is directly affected by the surface flatness. To know how much flatness is caused by machining operations, a traditional trial-and-error method has been used. The prediction for machined surface error/distortion can help to assess the integrity of the structural design as well as develop fixturing scheme to optimize machining quality. In this paper, a finite element method is applied to extract the compliance matrix of milling surface of a workpiece, such as the cylinder deck face, and an encoding MatLab program is used to compute the flatness due to milling forces. The paper focuses on deriving analytical models for evaluating the flatness of the cylinder deck face and optimizing the manufacturing process. Some special considerations have been taken to manufacturing cutting force evaluations according to analysis results of the deck face flatness. Emphasis is also placed on the optimization of machining parameters by iterations of flatness results so that minimization of surface deformations under machining loads can be achieved. The methodology introduced in the paper is the closed-loop iteration by combining structural finite element analysis (FEA) simulation, tooling kinematic simulation, and MatLab data modeling.
Publisher
World Scientific Pub Co Pte Lt
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献