A Non-Dominant Sorting Genetic Algorithm for Optimization of a Product Design and Selection of Its Suppliers

Author:

Labbi Oulfa1,Ahmadi Abdeslam2,Ouzizi Latifa3,Douimi Mohammed2

Affiliation:

1. Department of Industrial Engineering, Ecole Nationale des Sciences Appliquées, Sidi Mohamed Ben Abdellah University, Avenue My Abdallah Km 5, Route d’Imouzzer, BP 72, 30000, Fez, Morocco

2. Department of Mathematics and Computer Science, Ecole Nationale Supérieure d’Arts et Métiers, Moulay Ismail University, B.P. 15290 El Mansour, 50500 Meknès, Morocco

3. Department of Industrial and Production Engineering, Ecole Nationale Supérieure d’Arts et Métiers, Moulay Ismail University, B.P. 15290 El Mansour, 50500 Meknès, Morocco

Abstract

The aim of this paper is to address the problem of supplier selection in a context of an integrated product design. Indeed, the product specificities and the suppliers’ constraints are both integrated into product design phase. We consider the case of improving the design of an existing product and study the selection of its suppliers adopting a bi-objective optimization approach. Considering multi-products, multi-suppliers and multi-periods, the mathematical model proposed aims to minimize supplying, transport and holding costs of product components as well as quality rejected items. To solve the bi-objective problem, an evolutionary algorithm namely, non-dominant sorting genetic algorithm (NSGA-II) is employed. The algorithm provides a set of Pareto front solutions optimizing the two objective functions at once. Since parameters values of genetic algorithms have a significant impact on their efficiency, we have proposed to study the impact of each parameter on the fitness functions in order to determine the optimal combination of these parameters. Thus, a number of simulations evaluating the effects of crossover rate, mutation rate and number of generations on Pareto fronts are presented. To evaluate performance of the algorithm, results are compared to those obtained by the weighted sum method through a numerical experiment. According to the computational results, the non-dominant sorting genetic algorithm outperforms the CPLEX MIP solver in both solution quality and computational time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3