A Data Mining Based Dispatching Rules Selection System for the Job Shop Scheduling Problem

Author:

Zahmani M. Habib1,Atmani B.2

Affiliation:

1. Laboratory of Pure and Applied Mathematics, University of Mostaganem, Site II (EX-INES), Chemin des Crêtes. BP 188, 2700, Mostaganem, Algeria

2. Laboratoire d’Informatique d’Oran, University of Oran 1 Ahmed Benbella, BP 1524 EL Mnaoeur, Oran, Algeria

Abstract

Identifying the best Dispatching Rule in order to minimize makespan in a Job Shop Scheduling Problem is a complex task, since no Dispatching Rule is better than all others in different scenarios, making the selection of a most effective rule which is time-consuming and costly. In this paper, a novel approach combining Data Mining, Simulation, and Dispatching Rules is proposed. The aim is to assign in real-time a set of Dispatching Rules to the machines on the shop floor while minimizing makespan. Experiments show that the suggested approach is effective and reduces the makespan within a range of 1–44%. Furthermore, this approach also reduces the required computation time by using Data Mining to determine and assign the best Dispatching Rules to machines.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3