Analysis and Optimization of Surface Roughness and Microhardness for Roller Burnishing using Response Surface Methodology and Desirability Function Approach on Aluminum 63400

Author:

Kurkute Vijay1ORCID,Chavan Sandip2

Affiliation:

1. Sinhgad College of Engineering Pune, Savitribai Phule Pune University, Pune, India

2. Mechanical Engineering, MAEER’s Maharashtra Institute of Technology, Pune, India

Abstract

In the present study, response surface methodology (RSM) has been used to optimize roller burnishing process for aluminum alloy 63400 grade. Single roller burnishing tool (carbide) is used to burnish round aluminum alloy. Experiments were performed with Box and Wilson Central Composite Design (CCD). The machining factors controlled during experimentation are speed, feed, force and number of tool passes. The response parameters are surface roughness and microhardness. The most significant control factors on the surface roughness and microhardness were determined by analysis of variance (ANOVA). A controllable process parameter is correlated with surface roughness and microhardness by mathematical model. A quadratic regression analysis is performed to compute the correlation coefficient between the experimental and predicted values. The optimum surface roughness and microhardness foreseen by the model is found to agree well with the results of the experiment. To find the optimum value of both the response, desirability approach was used. The input parameters with most desirability value are selected as the optimum solution. Hence, the most desirable burnished condition desirability value 0.872 is speed 37.9[Formula: see text]m/min, feed 0.5[Formula: see text]mm/rev, force 35.49[Formula: see text]N and number of tool passes four. Surface roughness obtained is 0.524[Formula: see text][Formula: see text] m and microhardness is 125.02[Formula: see text]HV. This is the optimum condition for minimum surface roughness and maximum microhardness. The optimum surface finish and microhardness predicted by the model are found to agree well with the results of the experiment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3