Effect of Groove Designs on Residual Stress and Transverse Shrinkage in GMAW and PGMAW of A333 Seamless Steel Pipes

Author:

Mishra Rohit1,Kumar Upadhyay Avani2,Singla Amneesh2,Singh Yashvir3

Affiliation:

1. Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, M. P., India

2. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, U. P., India

3. Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Abstract

The effectiveness of weld joints primarily depends on the fusion of base metal, minimum heat-affected zone (HAZ) and lesser residual stresses. The severity of thermomechanical effects e.g. weld shrinkages and residual stresses is significantly minimized by narrow gap welding technique over the traditional welding. This work describes the welding of A333 Grade 3 steel pipes by the application of GMAW and PGMAW techniques. The analysis is made to capture the effects of groove designs on residual stress and transverse shrinkage. The process parameters used for the analysis are voltage, current and welding speed. In this work, narrow groove design using PGMAW process is capable of reducing the number of passes and area of weld deposit by 35–40% by volume. In PGMAW, decrement in residual stresses is observed with a narrow groove compared to conventional V groove technique. The results are validated by metallurgical and mechanical investigation of welded joints. This work will help other researchers to understand the effect of narrow gap welding using an optimum number of passes for thick pipes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3