Singular Spectrum Analysis and Circulant Maximum Variance Frames

Author:

Bonenberger Christopher12ORCID,Ertel Wolfgang2,Schwenker Friedhelm1,Schneider Markus2

Affiliation:

1. Institute of Neural Information Processing, University of Ulm, James-Franck-Ring, 89081 Ulm, Germany

2. Institute for Artificial Intelligence, Ravensburg-Weingarten University of Applied Sciences, Weingarten, Germany

Abstract

Singular spectrum analysis (SSA) is a powerful method that is frequently used in dynamical systems theory and time series analysis. However, the algorithm itself is only partially understood. In this paper, we tackle the problem of a thorough interpretation of the complete basic SSA algorithm. We point out the relationship between SSA and Fourier analysis (FA), linear filtering (LF), principal component analysis (PCA), and power spectrum density estimation (PSDE). The main contribution is a reformulation and comprehensive interpretation of SSA by means of a novel class of data-adaptive circulant frames. Based on this class of frames, we introduce a formalism for time series decomposition and reconstruction. This mathematical framework generalizes principle component analysis and SSA. We show that SSA, PCA, FA, LF, and PSDE can be found from special cases of the proposed frame structures. This way we are able to provide a formal description of SSA and its relationship to the aforementioned methods. Whilst previous approaches to the interpretation of SSA relied on approximations, we provide exact mathematical descriptions of the relation between the above-mentioned techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Note on Linear Time Series Prediction;Lecture Notes in Computer Science;2024

2. Structured Nonlinear Discriminant Analysis;Machine Learning and Knowledge Discovery in Databases;2023

3. A Novel Approach to Spectral Estimation and Moving Average Model Parameter Estimation;IEEE Signal Processing Letters;2023

4. Cyclic Nonlinear Correlation Analysis for Time Series;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3