Model theory of differential fields with finite group actions

Author:

Hoffmann Daniel Max1,Sánchez Omar León2

Affiliation:

1. Daniel Max Hoffmann, Instytut Matematyki, Uniwersytet Warszawski, Warszawa, Poland

2. Omar León Sánchez, Department of Mathematics, University of Manchester Oxford Road, Manchester, M13 9PL, United Kingdom

Abstract

Let [Formula: see text] be a finite group. We explore the model-theoretic properties of the class of differential fields of characteristic zero in [Formula: see text] commuting derivations equipped with a [Formula: see text]-action by differential field automorphisms. In the language of [Formula: see text]-differential rings (i.e. the language of rings with added symbols for derivations and automorphisms), we prove that this class has a model-companion — denoted [Formula: see text]. We then deploy the model-theoretic tools developed in the first author’s paper [D. M. Hoffmann, Model theoretic dynamics in a Galois fashion, Ann. Pure Appl. Logic 170(7) (2019) 755–804] to show that any model of [Formula: see text] is supersimple (but unstable when [Formula: see text] is nontrivial), a PAC-differential field (and hence differentially large in the sense of the second author and Tressl [Differentially large fields, preprint (2020), arXiv:2005.00888, available at https://arxiv.org/abs/2005.00888 ]), and admits elimination of imaginaries after adding a tuple of parameters. We also address model-completeness and supersimplicity of theories of bounded PAC-differential fields (extending the results of Chatzidakis and Pillay [Generic structures and simple theories, Ann. Pure Appl. Logic 95 (1998) 71–92] on bounded PAC-fields).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Logic

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PAC STRUCTURES AS INVARIANTS OF FINITE GROUP ACTIONS;The Journal of Symbolic Logic;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3