Approximate counting and NP search problems

Author:

Kołodziejczyk Leszek Aleksander1,Thapen Neil2

Affiliation:

1. Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

2. Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic

Abstract

We study a new class of NP search problems, those which can be proved total using standard combinatorial reasoning based on approximate counting. Our model for this kind of reasoning is the bounded arithmetic theory [Formula: see text] of [E. Jeřábek, Approximate counting by hashing in bounded arithmetic, J. Symb. Log.  74(3) (2009) 829–860]. In particular, the Ramsey and weak pigeonhole search problems lie in the new class. We give a purely computational characterization of this class and show that, relative to an oracle, it does not contain the problem CPLS, a strengthening of PLS. As CPLS is provably total in the theory [Formula: see text], this shows that [Formula: see text] does not prove every [Formula: see text] sentence which is provable in bounded arithmetic. This answers the question posed in [S. Buss, L. A. Kołodziejczyk and N. Thapen, Fragments of approximate counting, J. Symb. Log.  79(2) (2014) 496–525] and represents some progress in the program of separating the levels of the bounded arithmetic hierarchy by low-complexity sentences. Our main technical tool is an extension of the “fixing lemma” from [P. Pudlák and N. Thapen, Random resolution refutations, Comput. Complexity, 28(2) (2019) 185–239], a form of switching lemma, which we use to show that a random partial oracle from a certain distribution will, with high probability, determine an entire computation of a [Formula: see text] oracle machine. The introduction to the paper is intended to make the statements and context of the results accessible to someone unfamiliar with NP search problems or with bounded arithmetic.

Funder

the National Science Centre

GA ČR

Publisher

World Scientific Pub Co Pte Ltd

Subject

Logic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3