Affiliation:
1. Department of Mathematics, Miami University, Oxford, Ohio 45056, USA
Abstract
The Filter Dichotomy says that every uniform nonmeager filter on the integers is mapped by a finite-to-one function to an ultrafilter. The consistency of this principle was proved by Blass and Laflamme. A medial limit is a universally measurable function from [Formula: see text] to the unit interval [0, 1] which is finitely additive for disjoint sets, and maps singletons to 0 and ω to 1. Christensen and Mokobodzki independently showed that the Continuum Hypothesis implies the existence of medial limits. We show that the Filter Dichotomy implies that there are no medial limits.
Publisher
World Scientific Pub Co Pte Lt
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献