Affiliation:
1. Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract
Rado’s Conjecture is a compactness/reflection principle that says any nonspecial tree of height [Formula: see text] has a nonspecial subtree of size [Formula: see text]. Though incompatible with Martin’s Axiom, Rado’s Conjecture turns out to have many interesting consequences that are also implied by certain forcing axioms. In this paper, we obtain consistency results concerning Rado’s Conjecture and its Baire version. In particular, we show that a fragment of [Formula: see text], which is the forcing axiom for Baire Indestructibly Proper forcings, is compatible with the Baire Rado’s Conjecture. As a corollary, the Baire Rado’s Conjecture does not imply Rado’s Conjecture. Then we discuss the strength and limitations of the Baire Rado’s Conjecture regarding its interaction with stationary reflection principles and some families of weak square principles. Finally, we investigate the influence of Rado’s Conjecture on some polarized partition relations.
Publisher
World Scientific Pub Co Pte Lt