Affiliation:
1. Department of Mathematics, University of North Texas, Denton, TX 76203, USA
Abstract
If [Formula: see text] is a proper Polish metric space and [Formula: see text] is any countable dense submetric space of [Formula: see text], then the Scott rank of [Formula: see text] in the natural first-order language of metric spaces is countable and in fact at most [Formula: see text], where [Formula: see text] is the Church–Kleene ordinal of [Formula: see text] (construed as a subset of [Formula: see text]) which is the least ordinal with no presentation on [Formula: see text] computable from [Formula: see text]. If [Formula: see text] is a rigid Polish metric space and [Formula: see text] is any countable dense submetric space, then the Scott rank of [Formula: see text] is countable and in fact less than [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献