Affiliation:
1. Department of Mathematics, The University of Oslo, P. O. Box 1053, Blindern, N-0316 Oslo, Norway
2. School of Mathematics, University of Leeds, UK
Abstract
We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindelöf lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindelöf property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [Formula: see text] as “almost finite”, while the latter allows one to treat uncountable sets like e.g. [Formula: see text] as “almost countable”. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert–Bernays’ Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen’s spiritual successor, the program of Reverse Mathematics, and the associated Gödel hierarchy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalization of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalization of Feynman’s path integral.
Publisher
World Scientific Pub Co Pte Lt
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献