EVERY COUNTABLE MODEL OF SET THEORY EMBEDS INTO ITS OWN CONSTRUCTIBLE UNIVERSE

Author:

HAMKINS JOEL DAVID12

Affiliation:

1. Mathematics, Philosophy, Computer Science, The Graduate Center of The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

2. Department of Mathematics, The College of Staten Island of CUNY, Staten Island, NY 10314, USA

Abstract

The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1 + 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most Ord M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HF M, ∈M〉 of M. Indeed, 〈 HF M, ∈M〉 is universal for all countable acyclic binary relations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Reference10 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INITIAL SELF-EMBEDDINGS OF MODELS OF SET THEORY;The Journal of Symbolic Logic;2021-08-13

2. Rank-initial embeddings of non-standard models of set theory;Archive for Mathematical Logic;2019-11-14

3. THE MODAL LOGIC OF SET-THEORETIC POTENTIALISM AND THE POTENTIALIST MAXIMALITY PRINCIPLES;The Review of Symbolic Logic;2019-10-04

4. Indivisible sets and well‐founded orientations of the Rado graph;Mathematical Logic Quarterly;2019-04-10

5. MINIMUM MODELS OF SECOND-ORDER SET THEORIES;The Journal of Symbolic Logic;2019-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3