On metric approximate subgroups

Author:

Hrushovski Ehud1ORCID,Rodríguez Fanlo Arturo2ORCID

Affiliation:

1. University of Oxford, Mathematical Institute, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, England

2. Hebrew University of Jerusalem, Einstein Institute of Mathematics, Jerusalem 9190401, Israel

Abstract

Let [Formula: see text] be a group with a metric invariant under left and right translations, and let [Formula: see text] be the ball of radius [Formula: see text] around the identity. A [Formula: see text]-metric approximate subgroup is a symmetric subset [Formula: see text] of [Formula: see text] such that the pairwise product set [Formula: see text] is covered by at most [Formula: see text] translates of [Formula: see text]. This notion was introduced in [T. Tao, Product set estimates for noncommutative groups, Combinatorica, 28(5) (2008) 547–594, doi:10.1007/s00493-008-2271-7; T. Tao, Metric entropy analogues of sum set theory (2014), https://terrytao.wordpress.com/2014/03/19/metric-entropy-analogues-of-sum-set-theory/] along with the version for discrete groups (approximate subgroups). In [E. Hrushovski, Stable group theory and approximate subgroups, J. Amer. Math. Soc. 25(1) (2012) 189–243, doi:10.1090/S0894-0347-2011-00708-X], it was shown for the discrete case that, at the asymptotic limit of [Formula: see text] finite but large, the “approximateness” (or need for more than one translate) can be attributed to a canonically associated Lie group. Here we prove an analogous result in the metric setting, under a certain finite covering assumption on [Formula: see text] replacing finiteness. In particular, if [Formula: see text] has bounded exponent, we show that any [Formula: see text]-metric approximate subgroup is close to a [Formula: see text]-metric approximate subgroup for an appropriate [Formula: see text].

Funder

European Union Seventh Framework Program

ERC

Engineering and Physical Sciences Research Council: EPSRC Dept. Award

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3