Randomized feasible interpolation and monotone circuits with a local oracle

Author:

Krajíček Jan1

Affiliation:

1. Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, CZ 186 75, The Czech Republic

Abstract

The feasible interpolation theorem for semantic derivations from [J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457–486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two [Formula: see text] sets [Formula: see text] and [Formula: see text] a small communication protocol (a general dag-like protocol in the sense of Krajíček (1997) computing the Karchmer–Wigderson multi-function [Formula: see text] associated with the sets, and such a protocol further yields a small circuit separating [Formula: see text] from [Formula: see text]. When [Formula: see text] is closed upwards, the protocol computes the monotone Karchmer–Wigderson multi-function [Formula: see text] and the resulting circuit is monotone. Krajíček [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450–458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that does correspond to communication protocols for [Formula: see text] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of [Formula: see text], [Formula: see text] closed upwards, yields a small randomized protocol for [Formula: see text] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system [Formula: see text] operating with clauses formed by linear Boolean functions over [Formula: see text]. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajíček [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582–1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496–525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower Bounds for Regular Resolution over Parities;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. On Protocols for Monotone Feasible Interpolation;ACM Transactions on Computation Theory;2023-03-31

3. On Proof Complexity of Resolution over Polynomial Calculus;ACM Transactions on Computational Logic;2022-07-22

4. Random resolution refutations;computational complexity;2019-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3