HEURISTIC APPROACH TO THE SCHWARZSCHILD GEOMETRY

Author:

VISSER MATT1

Affiliation:

1. School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

Abstract

In this article I present a simple Newtonian heuristic for motivating a weak-field approximation for the spacetime geometry of a point particle. The heuristic is based on Newtonian gravity, the notion of local inertial frames (the Einstein equivalence principle), plus the use of Galilean coordinate transformations to connect the freely falling local inertial frames back to the "fixed stars." Because of the heuristic and quasi-Newtonian manner in which the specific choice of spacetime geometry is motivated, we are at best justified in expecting it to be a weak-field approximation to the true spacetime geometry. However, in the case of a spherically symmetric point mass the result is coincidentally an exact solution of the full vacuum Einstein field equations — it is the Schwarzschild geometry in Painlevé–Gullstrand coordinates. This result is much stronger than the well-known result of Michell and Laplace whereby a Newtonian argument correctly estimates the value of the Schwarzschild radius — using the heuristic presented in this article one obtains the entire Schwarzschild geometry. The heuristic also gives sensible results — a Riemann flat geometry — when applied to a constant gravitational field. Furthermore, a subtle extension of the heuristic correctly reproduces the Reissner–Nordström geometry and even the de Sitter geometry. Unfortunately the heuristic construction is not truly generic. For instance, it is incapable of generating the Kerr geometry or anti-de Sitter space. Despite this limitation, the heuristic does have useful pedagogical value in that it provides a simple and direct plausibility argument (not a derivation) for the Schwarzschild geometry — suitable for classroom use in situations where the full power and technical machinery of general relativity might be inappropriate. The extended heuristic provides more challenging problems — suitable for use at the graduate level.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Painlevé–Gullstrand coordinates for Schwarzschild–de Sitter spacetime;Annals of Physics;2023-02

2. New form of the Kerr-Newman solution;Physical Review D;2023-01-31

3. Physically motivated ansatz for the Kerr spacetime;Classical and Quantum Gravity;2022-11-03

4. Painlevé–Gullstrand coordinates versus Kerr spacetime geometry;General Relativity and Gravitation;2022-11

5. An extensive analysis of Schwarzschild exterior solution;Journal of High Energy Astrophysics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3