Cosmographic and phase-space analysis of dynamical Chern–Simons modified and fractal gravities

Author:

Usman Muhammad12,Jawad Abdul13ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Punjab, Pakistan

2. Department of Natural Sciences & Humanities, University of Engineering & Technology Lahore, New Campus, Kala Shah Kaku, Punjab, Pakistan

3. Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, P. R. China

Abstract

We examine the cosmic scenario of interacting Kaniadakis holographic dark energy in dynamical Chern–Simons modified gravity and the fractal universe. For this purpose, the Hubble, deceleration, coincidence, equation-of-state and jerk parameters have been evaluated in view of the redshift parameter. It is observed that deceleration parameter [Formula: see text] evaluates the accelerated expansion of the universe in both gravities. The coincidence parameter [Formula: see text] exhibits the transition of behavior from dark matter to dark energy era of the universe. The behavior of the equation-of-state parameter [Formula: see text] describes the quintessence and vacuum regions of the universe in both gravities for maximum choices of the interacting parameters. The jerk parameter shows the correspondence of the given model with [Formula: see text]CDM model and other standard models in both gravities. All the parameters exhibit consistent behavior with the Planck 2018 data. We also analyze the dynamical stability in both frameworks by formulating dynamical models in the form of a system of differential equations and evaluating their corresponding critical points. Critical points of both models are stable and phase plots indicate attractor behavior that implies stability of the models. Further, stability conditions of both models signify the accelerating expansion of the universe. In addition, we discuss the thermodynamics of this model with the generalized second law and find its validity in both frameworks.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3