Dependence of acoustic surface gravity on geometric configuration of matter for axially symmetric background flows in the Schwarzschild metric

Author:

Tarafdar Pratik1,Das Tapas K.2

Affiliation:

1. S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India

2. Harish Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, UP, India

Abstract

In black hole evaporation process, the mass of the hole anti-correlates with the Hawking temperature. This indicates that the smaller holes have higher surface gravity. For analogue Hawking effects, however, the acoustic surface gravity is determined by the local values of the dynamical velocity of the stationary background fluid flow and the speed of propagation of the characteristic perturbation embedded in the background fluid, as well as by their space derivatives evaluated along the direction normal to the acoustic horizon, respectively. The mass of the analogue system — whether classical or quantum — does not directly contribute to extremize the value of the associated acoustic surface gravity. For general relativistic axially symmetric background fluid flow in the Schwarzschild metric, we show that the initial boundary conditions describing such accretion influence the maximization scheme of the acoustic surface gravity and associated analogue temperature. Aforementioned background flow onto black holes can assume three distinct geometric configurations. Identical set of initial boundary conditions can lead to entirely different phase-space behavior of the stationary flow solutions, as well as the salient features of the associated relativistic acoustic geometry. This implies that it is imperative to investigate how the measure of the acoustic surface gravity corresponding to the accreting black holes gets influenced by the geometric configuration of the inflow described by various thermodynamic equations of state. Such investigation is useful to study the effect of Einstenian gravity on the nonconventional classical features as observed in Hawking like effect in a dispersive medium in the limit of a strong dispersion relation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3