Axion and dilaton + metric emerge jointly from an electromagnetic model universe with local and linear response behavior

Author:

Hehl Friedrich W.12

Affiliation:

1. Institute for Theoretical Physics, University of Cologne, Zülpicher Straβe 77, 50937 Cologne, Germany

2. Department of Physics and Astronomy, University of Missouri, Missouri, Columbia, MO 65211, USA

Abstract

We take a quick look at the different possible universally coupled scalar fields in nature. Then, we discuss how the gauging of the group of scale transformations (dilations), together with the Poincaré group, leads to a Weyl–Cartan spacetime structure. There the dilaton field finds a natural surrounding. Moreover, we describe shortly the phenomenology of the hypothetical axion field. In the second part of our essay, we consider a spacetime, the structure of which is exclusively specified by the premetric Maxwell equations and a fourth rank electromagnetic response tensor density [Formula: see text] with 36 independent components. This tensor density incorporates the permittivities, permeabilities and the magneto-electric moduli of spacetime. No metric, no connection, no further property is prescribed. If we forbid birefringence (double-refraction) in this model of spacetime, we eventually end up with the fields of an axion, a dilaton and the 10 components of a metric tensor with Lorentz signature. If the dilaton becomes a constant (the vacuum admittance) and the axion field vanishes, we recover the Riemannian spacetime of general relativity theory. Thus, the metric is encapsulated in [Formula: see text], it can be derived from it.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On spacetime structure and electrodynamics;International Journal of Modern Physics D;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3