Abstract
The Wheeler–DeWitt equation for the wave function ψ is obtained from the two-dimensional world-sheet action for the bosonic string and the superstring, including higher-derivative terms, as the Schrödinger equation i ∂ ψ/ ∂τ = V(τ)ψ. The potential is given by the rate at which the world-sheet area is swept out, V(τ) = dA(τ)/dτ, and is positive semi-definite, allowing the existence of a ground state, corresponding to the absence of the string, with a non-vanishing probability density ψ ψ*. Integration of this equation yields the solution [Formula: see text], where [Formula: see text] is the action, minus the higher-derivative terms [Formula: see text] (and terms involving ∊ab in the case of the superstring), which, however, are constrained to vanish semi-classically, being constructed from the square of the equation of motion for the bosonic coordinates XA derived from [Formula: see text] alone. This path-integral expression for ψ is consistent with the operator replacements for the canonical momenta used in its derivation, and forms the basis of the approach due to Polyakov of summing over random surfaces. Comparison is made with the Schrödinger equations derived previously from the reduced, four-dimensional effective action for the heterotic superstring, and for the Schwarzschild black hole (by Tomimatsu), where the potential is also positive semi-definite, being (twice) the total mass of the Universe and the mass of the black hole, respectively, showing the unity of the method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献