GENERAL RELATIVISTIC RELATION BETWEEN DENSITY CONTRAST AND PECULIAR VELOCITY

Author:

MANSOURI REZA12,RAHVAR SOHRAB12

Affiliation:

1. Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran

2. Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran, Iran

Abstract

Concepts like peculiar velocity, gravitational force, and power spectrum and their interrelationships are of utmost importance in the theories of structure formation. The observational implementation of these concepts is usually based on the Newtonian hydrodynamic equations, but used up to scales where general relativistic effects come in. Using a perturbation of FRW metric in harmonic gauge, we show that the relativistic effects reduce to light cone effects including the expansion of the universe. Within the Newtonian gravitation, the linear perturbation theory of large scale structure formation predicts the peculiar velocity field to be directly proportional to gravitational force due to the matter distribution. The corresponding relation between peculiar velocity field and density contrast has been given by Peebles. Using the general relativistic perturbation we have developed, this familiar relation is modified by doing the calculation on the light cone in contrast to the usual procedure of taking a spacelike slice defined at a definite time. The velocity and density-spectrum are compared to the familiar Newtonian expressions. In particular, the relativistic β-value obtained is reduced and leads to an increased bias factor or a decreased expected amount of the dark matter in a cluster.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3