Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space — A review and applications

Author:

Giesel Kristina1ORCID,Herzog Adrian1

Affiliation:

1. Department of Physics, Institute for Quantum Gravity, FAU Erlangen — Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany

Abstract

The theory of cosmological perturbations is a well-elaborated field and has been successfully applied, e.g. to model the structure formation in our universe and the prediction of the power spectrum of the cosmic microwave background. To deal with the diffeomorphism invariance of general relativity, one generally introduces combinations of the metric and matter perturbations, which are gauge invariant up to the considered order in the perturbations. For linear cosmological perturbations, one works with the so-called Bardeen potentials widely used in this context. However, there exists no common procedure to construct gauge invariant quantities also for higher-order perturbations. Usually, one has to find new gauge invariant quantities independently for each order in perturbation theory. With the relational formalism introduced by Rovelli and further developed by Dittrich and Thiemann, it is in principle possible to calculate manifestly gauge invariant quantities, that is quantities that are gauge invariant up to arbitrary order once one has chosen a set of so-called reference fields, often also called clock fields. This article contains a review of the relational formalism and its application to canonical general relativity following the work of Garcia, Pons, Sundermeyer and Salisbury. As the starting point for our application of this formalism to cosmological perturbation theory, we also review the Hamiltonian formulation of the linearized theory for perturbations around FLRW spacetimes. The main aim of our work will be to identify clock fields in the context of the relational formalism that can be used to reconstruct quantities like the Bardeen potential as well as the Mukhanov–Sasaki variable. This requires a careful analysis of the canonical formulation in the extended ADM-phase-space where lapse and shift are treated as dynamical variables. The actual construction of such observables and further investigations thereof will be carried out in our companion paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3