Affiliation:
1. L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Ulitsa Kosygina 2, Moscow 117940, Russia
2. V. A. Steklov Mathematical Institute, Russian Academy of Sciences, Vavilova 42, Moscow 117966, Russia
Abstract
The question of the initial configuration of the Universe — did the expanding Friedmann space-time ds2 = dt2 - a2(t)dx2 tend to a singularity when extrapolated back in time, or was there a turning point, indicating a previous phase of contraction? — is re-examined in the context of the heterotic superstring theory of Gross et al. If the adiabatic index tends to the value γ = 1, then the higher-derivative terms ℛ2 in the Lagrangian L dominate the Einstein–Hilbert term R/16πG in the time interval t p ≲ t ≲ 4t p , during which the action is S ≈ 25ℏ, guaranteeing the approximate validity of the classical field equations (if the compactification process is ignored), where [Formula: see text] is the Newton gravitational constant and t p is the Planck time. Under these conditions, Ruzmaĭkina and Ruzmaĭkina have shown, for a flat three-space with K = 0, that the initial singularity can only be avoided at all if there is a spin-zero tachyon, a conclusion modified by Barrow and Ottewill if K = ±1. We have previously shown, however, that the theory is tachyon-free, and have argued that K has to vanish for the existence of a well-defined, quantum-mechanical ground state. Also, if there is no inflation, the radius function is always much too large for the terms in K to exert any effect, a(t) ≳ 5 × 1029t p . While if γ = 2, then ℛ2 never dominates R/16πG. Accordingly, we conjecture that the Universe did not bounce, irrespective of the value of γ, the absence of a prior contracting phase thus being an aspect of causality.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献