Black hole initial data by numerical integration of the parabolic–hyperbolic form of the constraints

Author:

Nakonieczna Anna1,Nakonieczny Łukasz1,Rácz István12

Affiliation:

1. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa, Poland

2. Wigner Research Center for Physics, Konkoly Thege Miklós út 29-33, H-1121 Budapest, Hungary

Abstract

The parabolic–hyperbolic form of the constraints is integrated numerically. The applied numerical stencil is fourth-order accurate (in the spatial directions) while “time”-integration is made by using the method of lines with a fourth-order order accurate Runge–Kutta scheme. The proper implementation of the applied numerical method is verified by convergence tests and monitoring the relative and absolute errors is determined by comparing numerically and analytically known solutions of the constraints involving boosted and spinning vacuum single black hole configurations. The main part of our investigations is, however, centered on the construction of initial data for distorted black holes which, in certain cases, have non-negligible gravitational wave content. Remarkably, the applied new method is unprecedented in that it allows to construct initial data for highly boosted and spinning black holes, essentially for the full physical allowed ranges of these parameters. In addition, the use of the evolutionary form of the constraints is free from applying any sort of boundary conditions in the strong field regime.

Funder

Polish National Science Centre

National Science Centre of Poland

European Union's Horizon 2020

NKFI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3