When can an "Expanding Universe" look "Static" and vice versa: A comprehensive study

Author:

Mitra Abhas1

Affiliation:

1. Theoretical Astrophysics Section, Bhabha Atomic Research Centre, Mumbai, India

Abstract

The Friedmann–Robertson–Walker (FRW) metric expressed, in terms of comoving coordinates (r, t), always looks nonstatic. But by employing the recently derived curvature/Schwarzschild form, (R, T), of FRW metric (A. Mitra, Gravit. Cosmol. 19 (2013) 134), we show here that FRW metric can assume static forms when the net energy density (ρe) is solely due to the vacuum contribution. Earlier this question was explored by Florides (Gen. Relativ. Gravit. 12 (1980) 563) whose approach was complex and of purely mathematical nature. Also, unlike Florides, we do not assume any a priori separability of T(r, t) = F(r)G(t) and thus our treatment is truly general and yet simpler. More interestingly, even if the net energy density involved in a certain FRW model may appear to be nonzero from its algebric appearance, it may still be possible that tacitly ρe = 0 and the model actually corresponds to a vacuum Minkowski metric. For instance, it has been found that FRW universes which appear to be expanding with a fixed speed in comoving coordinates are intrinsically static universes. While such a linearly expanding universe having k = -1 is well-known as the Milne universe, the corresponding k = 0 case has recently been shown to be vacuum in disguise (A. Mitra, Mon. Not. Roy. Astron. Soc. 442 (2014) 382). In addition, here we show that even the k = +1 linearly "expanding" universe (in comoving coordinates) tacitly corresponds to Einstein's static universe.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3