Affiliation:
1. Center for Quantum Spacetime, Sogang University, Seoul 121-741, Korea
2. Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
Abstract
From the quasinormal modes (QNM) of black holes, we obtain the quantizations of the entropy and horizon area of black holes via Bohr–Sommerfeld quantization, based on Bohr's correspondence principle. For this, we identify the appropriate action variable of the classical system corresponding to a black hole. By considering the BTZ black holes in topologically massive gravity as well as Einstein gravity, it is found that the spectra of not the horizon areas but the entropies of black holes are equally spaced. We also propose that other characteristic modes of black holes, which are non-QNM or holographic QNM, can be used in quantization of entropy spectra just like QNM. From these modes, it is found that only the entropy spectrum of the warped AdS3 black hole is equally spaced as well. Furthermore, by considering a scattering problem in a black hole, we propose that the total transmission modes and total reflection modes of black holes can be regarded as characteristic modes of black holes and result in the equally spaced entropy of the Kerr and Reissner–Nordström black holes. Finally, we conclude that there is a universal behavior that the entropy spectra of various black holes are equally spaced.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献