Modified structure equations and mass–radius relations of white dwarfs arising from the linear generalized uncertainty principle

Author:

Abac Adrian G.1ORCID,Esguerra Jose Perico H.2,Otadoy Roland Emerito S.1

Affiliation:

1. Department of Physics, University of San Carlos, Nasipit, Talamban Cebu City, Cebu 6000, Philippines

2. National Institute of Physics, University of the Philippines, Diliman Quezon City 1101, Philippines

Abstract

The generalized uncertainty principle (GUP) is a common feature among several approaches related to quantum gravity. An approach to GUP was recently developed that contains both linear and quadratic terms of momenta, from which an infinitesimal phase space volume was derived up to the linear term of momenta. We studied the effects of this linear GUP approach on the structure equations and mass–radius relation of zero-temperature white dwarfs. We formulated a linear GUP-modified Chandrasekhar equation of state (EoS) by deriving exact forms of the thermodynamic properties of ideal Fermi gases. This was then used to obtain the analytical form of the modified Newtonian structure equations for the white dwarfs. By imposing a constraint on the momenta of the particles in the white dwarf due to linear GUP, the structure equations were solved and the modified mass–radius relation of the white dwarfs were obtained. This was then extended in the context of general relativity (GR), which, like linear GUP, affects white dwarfs significantly in the high-mass regime. We found that linear GUP displays a similar overall effect as in GR — linear GUP supports gravitational collapse of the white dwarf, by decreasing its limiting (maximum) mass and increasing its corresponding limiting (minimum radius). We also found that GUP effects become evident only at large values of the GUP parameter, but these values are still within the estimated bounds. This effect gets more prominent as we increase the as-of-yet unestablished value of the parameter.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3