THE MASS OF THE OPPENHEIMER–SNYDER-BLACK HOLE: ONLY FINITE MASS QUASI-BLACK HOLES

Author:

MITRA ABHAS1,SINGH K. K.1

Affiliation:

1. Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

Oppenheimer and Snyder (OS) in their paper apparently showed the formation of an event horizon [see Eq. (37) in Phys. Rev.56 (1939) 455] for a collapsing homogeneous dust ball of mass M as the circumference radius of the outermost surface, rb → r0 = 2GM/c2 in a proper time [Formula: see text] in the limit of large Schwarzschild time t → ∞. But Eq. (37) was approximated from Eq. (36) whose essential character is ([Formula: see text]) where, at the boundary of the star y = rb/r0 = rbc2/2GM. And since the argument of a logarithmic function cannot be negative, one must have y ≥ 1 or 2GM/rbc2 ≤ 1. This shows that, at least, in this case (i) trapped surfaces are not formed, (ii) if the collapse indeed proceeds upto r = 0, we must have M = 0, and (iii) proper time taken for collapse τ → ∞. Thus, the gravitational mass of OS-black holes (OS-BHs), is unique and equal to zero. In fact, by invoking Birkhoff's theorem, it has been found that the OS collapse is only a fictitious mathematical artifact because it corresponds to a matter density ρ = 0 [Mitra, Astrophys. Space Sci.332 (2011) 43, arXiv:1101.0601]. Further, this is also in agreement with the proof that Schwarzschild BHs have the unique gravitational mass M = 0 [Mitra, J. Math. Phys.50 (2009), arXiv:0904.4754], and they represent asymptotic final state of physical collapse for which entire mass-energy is radiated out [Mitra and Glendenning, Mon. Not. R. Astron. Soc. Lett.404 (2010) L50, arXiv:1003.3518]. Finally this is in agreement with the conclusion that "the discussion of physical behavior of black holes, classical or quantum, is only of academic interest — we wonder whether nature allows gravitational collapse to continue inside the EH at all" [Narlikar and Padmanabhan, Found. Phys.18 (1989) 659, doi:10.1007/BF00734568].

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3