Fermionic condensate and the Casimir effect in cosmic string spacetime

Author:

Grigoryan A. Kh.1,Mkrtchyan A. R.12,Saharian A. A.13ORCID

Affiliation:

1. Institute of Applied Problems in Physics NASRA, 25 Nersessian Street, 0014 Yerevan, Armenia

2. Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia

3. Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan, Armenia

Abstract

We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy–momentum tensor for a massive fermionic field. As geometry of boundaries we consider two plates perpendicular to the string axis on which the field is constrained by the MIT bag boundary condition. By using the Abel–Plana type summation formula, the VEVs in the region between the plates are decomposed into the boundary-free and boundary-induced contributions for general case of the planar angle deficit. The boundary-induced parts in both the fermionic condensate and the energy–momentum tensor vanish on the cosmic string. Fermionic condensate is positive near the string and negative at large distances, whereas the vacuum energy density is negative everywhere. The radial stress is equal to the energy density. For a massless field, the boundary-induced contribution in the VEV of the energy–momentum tensor is different from zero in the region between the plates only and it does not depend on the coordinate along the string axis. In the region between the plates and at large distances from the string, the decay of the topological part is exponential for both massive and massless fields. This behavior is in contrast to that for the VEV of the energy–momentum tensor in the boundary-free geometry with the power law decay for a massless field. The vacuum pressure on the plates is inhomogeneous and vanishes at the location of the string. The corresponding Casimir forces are attractive.

Funder

State Committee of Science Ministry of Education and Science of Republic of Armenia

Armenian National Science and Education Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3