COLLECTIVE BARYON DECAY AND GRAVITATIONAL COLLAPSE

Author:

CHAPLINE GEORGE1,BARBIERI JAMES2

Affiliation:

1. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USA

2. Naval Air Warfare Center, 1 Administration Circle, China Lake, CA 93555, USA

Abstract

While it is widely believed that the gravitational collapse of a sufficiently large mass will lead to a density singularity and an event horizon, we propose that this never happens when quantum effects are taken into account. In particular, we propose that when the conditions become ripe for the formation of a trapped surface, a quantum critical firewall sweeps over the collapsing body, transforming the nucleons in the collapsing matter into a lepton/photon gas together with droplets of a positive vacuum energy. This will happen regardless of the matter density at the time a trapped surface starts to form, and as a result, we predict that at least in all cases of gravitational collapse involving ordinary matter, a large fraction of the rest mass of the collapsing matter will be converted into a burst of neutrinos and γ-rays. We predict that the peak luminosity of these bursts is only weakly dependent on the mass of the collapsing object, and on the order of (ϵq/mPc2)1/4c5/G where ϵq is the mean energy of a nucleon parton and mP is the Planck mass. The duration of the bursts will depend on the mass of the collapsing object; in the case of stellar core collapse, we predict that the duration of both the neutrino and γ-ray bursts will be on the order of 10s.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of massive graviton on dark energy star structure;Physics of the Dark Universe;2023-12

2. Baryon breakdown in black hole;Frontiers in Physics;2022-09-07

3. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY;The Astrophysical Journal;2015-11-09

4. The Cosmic Censorship Conjecture in a Higher Dimensional Spacetime and Λ;International Journal of Theoretical Physics;2015-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3