Cosmic expansion with curved dark energy cosmology: Inevitability of cosmic doomsday

Author:

Rabha Chayanika1ORCID,Kalita Sanjeev1

Affiliation:

1. Department of Physics, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, 781014, Assam, India

Abstract

In this work, we have constructed deceleration–acceleration and future evolution of cosmic expansion with curved dynamical dark energy models. Closed and open spatial curvatures are calculated by assuming that dark energy density does not exceed 85% of the closure density and by obtaining lower bounds on the ratio of dark energy to matter density, in terms of equation of state of dark energy. The range of transition epoch [Formula: see text] realized for spatial curvature [Formula: see text] is consistent with model independent estimations coming from galactic ages, strong lensing, Type Ia supernovae and recent constraints coming from [Formula: see text] measurements in non-flat dynamical dark energy models. Two novel parametrizations of dark energy equation of state namely the logarithmic and oscillatory, which are singularity free at future point [Formula: see text] are used to study the deceleration parameter q(z). Irrespective of spatial curvature, cosmic doomsday has been found inevitable for both the parametrizations. The time evolution of logarithmic parametrization, being reminiscent of a quintom field (canonical[Formula: see text]phantom), is converted into dynamics of a canonical quintessence and a phantom field for the redshift range ([Formula: see text],[Formula: see text]) and ([Formula: see text], [Formula: see text]). It is found that irrespective of spatial curvature, the quintessence component becomes sub-dominant in future giving it’s way to the phantom component.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3