Status of dark matter in the universe

Author:

Freese Katherine12

Affiliation:

1. Physics Department, University of Michigan, Ann Arbor, MI 48109, USA

2. Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Stockholm, Sweden

Abstract

Over the past few decades, a consensus picture has emerged in which roughly a quarter of the universe consists of dark matter. I begin with a review of the observational evidence for the existence of dark matter: rotation curves of galaxies, gravitational lensing measurements, hot gas in clusters, galaxy formation, primordial nucleosynthesis and Cosmic Microwave Background (CMB) observations. Then, I discuss a number of anomalous signals in a variety of data sets that may point to discovery, though all of them are controversial. The annual modulation in the DAMA detector and/or the gamma-ray excess seen in the Fermi Gamma Ray Space Telescope from the Galactic Center could be due to WIMPs; a 3.5 keV X-ray line from multiple sources could be due to sterile neutrinos; or the 511 keV line in INTEGRAL data could be due to MeV dark matter. All of these would require further confirmation in other experiments or data sets to be proven correct. In addition, a new line of research on dark stars is presented, which suggests that the first stars to exist in the universe were powered by dark matter heating rather than by fusion: the observational possibility of discovering dark matter in this way is discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed-form Expressions for Multiscatter Dark Matter Capture Rates;The Astrophysical Journal;2024-07-29

2. Vector wave dark matter and terrestrial quantum sensors;Journal of Cosmology and Astroparticle Physics;2024-06-01

3. Quantum Field Theory of Neutrino Mixing in Spacetimes with Torsion;Universe;2024-04-03

4. The effectiveness of exoplanets and Brown Dwarfs as sub-GeV Dark Matter detectors;Journal of Cosmology and Astroparticle Physics;2024-04-01

5. Inflation in symmergent metric-Palatini gravity;Journal of Cosmology and Astroparticle Physics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3