Expectation values of minimum-length Ricci scalar

Author:

Pesci Alessandro1

Affiliation:

1. Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy

Abstract

In this paper, we consider a specific model, implementing the existence of a fundamental limit distance [Formula: see text] between (space or time separated) points in spacetime, which in the recent past has exhibited the intriguing feature of having a minimum-length Ricci scalar [Formula: see text] that does not approach the ordinary Ricci scalar [Formula: see text] in the limit of vanishing [Formula: see text]. [Formula: see text] at a point has been found to depend on the direction along which the existence of minimum distance is implemented. Here, we point out that the convergence [Formula: see text] in the [Formula: see text] limit is anyway recovered in a relaxed or generalized sense, which is when we average over directions, this suggesting we might be taking the expectation value of [Formula: see text] promoted to be a quantum variable. It remains as intriguing as before the fact that we cannot identify (meaning this is much more than simply equating in the generalized sense above) [Formula: see text] with [Formula: see text] in the [Formula: see text] limit, namely, when we get ordinary spacetime. Thing is like if, even when [Formula: see text] (read here the Planck length) is far too small to have any direct detection of it feasible, the intrinsic quantum nature of spacetime might anyway be experimentally at reach, witnessed by the mentioned special feature of Ricci, not fading away with [Formula: see text] (i.e. persisting when taking the [Formula: see text] limit).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3