Spherically symmetric double layers in Weyl+Einstein gravity

Author:

Berezin Victor1,Dokuchaev Vyacheslav12ORCID,Eroshenko Yury1

Affiliation:

1. Institute for Nuclear Research of the Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia

2. National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow 115409, Russia

Abstract

We study the matching conditions on singular hypersurfaces in Weyl[Formula: see text]Einstein gravity. Unlike General Relativity, the so-called quadratic gravity allows the existence of a double layer, i.e. the derivative of [Formula: see text]-function. This double layer is a purely geometrical phenomenon and it may be treated as the purely gravitational shock wave. The mathematical formalism was elaborated by Senovilla for generic quadratic gravity. We derived the matching conditions for the spherically symmetric singular hypersurface in the Weyl[Formula: see text]Einstein gravity. It was found that in the presence of the double layer, the matching conditions contain an arbitrary function. One of the consequences of such freedom is that a trace of the extrinsic curvature tensor of a singular hypersurface is necessarily equal to zero. We suggested that the [Formula: see text] and [Formula: see text] components of the surface matter energy–momentum tensor of the shell describe energy flow [Formula: see text] and momentum transfer [Formula: see text] of particles produced by the double layer itself. Moreover, the requirement of the zero trace of the extrinsic curvature tensor (mentioned above) implies that [Formula: see text], and this fact also supports our suggestion, because it means that for the observer sitting on the shell, particles will be seen created by pairs, and the sum of their momentum transfers must be zero. We found also that the spherically symmetric null double layer in the Weyl[Formula: see text]Einstein gravity does not exist at all.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3