Affiliation:
1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510 México, D.F., México
Abstract
We apply Lie algebra deformation theory to the problem of identifying the stable form of the quantum relativistic kinematical algebra. As a warm up, given Galileo's conception of spacetime as input, some modest computer code we wrote zeroes in on the Poincaré-plus-Heisenberg algebra in about a minute. Further ahead, along the same path, lies a three-dimensional deformation space, with an instability double cone through its origin. We give physical as well as geometrical arguments supporting our view that moment, rather than position operators, should enter as generators in the Lie algebra. With this identification, the deformation parameters give rise to invariant length and mass scales. Moreover, standard quantum relativistic kinematics of massive, spinless particles corresponds to non-commuting moment operators, a purely quantum effect that bears no relation to spacetime non-commutativity, in sharp contrast to earlier interpretations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献