Affiliation:
1. Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
Abstract
Within the spirit of five-dimensional gravity in the Randall-Sundrum scenario, in this paper we consider cosmological and gravitational implications induced by forcing the spacetime metric to satisfy a Misner-like symmetry. We first show that in the resulting Misner-brane framework the Friedmann metric for a radiation dominated flat universe and the Schwarzschild or anti-de Sitter black hole metrics are exact solutions on the branes, but the model cannot accommodate any inflationary solution. The horizon and flatness problems can however be solved in Misner-brane cosmology by causal and noncausal communications through the extra dimension between distant regions which are outside the horizon. Based on a semiclassical approximation to the path-integral approach, we have calculated the quantum state of the Misner-brane universe and the quantum perturbations induced on its metric by brane propagation along the fifth direction. We have then considered testable predictions from our model. These include a scale-invariant spectrum of density perturbations whose amplitude can be naturally accommodated to the required value 10-5-10-6, and a power spectrum of CMB anisotropies whose acoustic peaks are at the same sky angles as those predicted by inflationary models, but having much smaller secondary-peak intensities. These predictions seem to be compatible with COBE and recent Boomerang and Maxima measurements.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics