Black hole remnants due to Planck-length deformed QFT

Author:

Dirkes Alain R. P.1,Maziashvili Michael2,Silagadze Zurab K.3

Affiliation:

1. Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe Universität, Ruth-Moufang-Strasse 1, Frankfurt am Main, D-60438, Germany

2. School of Natural Sciences and Engineering, Ilia State University, 3/5 Cholokashvili Ave., Tbilisi 0162, Georgia

3. Budker Institute of Nuclear Physics, SB RAS and Novosibirsk State University, 630 090, Novosibirsk, Russia

Abstract

It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black hole (BH) remnants of the order of the Planck mass. Usually, this sort of QFTs are endowed with two specific features, the modified dispersion relation, which is universal, and the concept of minimum length, which, however, is not universal. While the emergence of the minimum length most readily leads to the idea of the BH remnants, here, we examine the behavior of the potential that follows from the Planck-length deformed QFT in the absence of the minimum length and show that it might also lead to the formation of the Planck mass BHs in some particular cases. The calculations are made for higher-dimensional case as well. Such BH remnants might be considered as a possible candidates for the dark-matter.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3