Affiliation:
1. The Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Pune University Campus, Ganeshkhind, Pune 411007, Maharashtra, India
Abstract
There are two strong clues about the quantum structure of spacetime and the gravitational dynamics, which are almost universally ignored in the conventional approaches to quantize gravity. The first clue is that null surfaces exhibit (observer-dependent) thermal properties and possess a heat density. This suggests that spacetime, like matter, has microscopic degrees of freedom and its long wavelength limit should be described in thermodynamic language and not in a geometric language. Second clue is related to the existence of the cosmological constant. Its understanding from first-principles will require the dynamical principles of the theory to be invariant under the shift [Formula: see text]. This puts strong constraints on the nature of gravitational dynamics and excludes metric tensor as a fundamental dynamical variable. In fact, these two clues are closely related to each other. When the dynamical principles are recast, respecting the symmetry [Formula: see text], they automatically acquire a thermodynamic interpretation related to the first clue. The first part of this review provides a pedagogical introduction to thermal properties of the horizons, including some novel derivations. The second part describes some aspects of cosmological constant problem and the last part provides a perspective on gravity which takes into account these principles.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献