ON THE UPPER LIMIT FOR SURFACE TEMPERATURE OF A STATIC AND SPHERICAL BODY

Author:

ŞİŞMAN ALTUĜ1

Affiliation:

1. Istanbul Technical University, Nuclear Energy Institute, TR-80626 Maslak, Istanbul, Turkey

Abstract

An upper limit for surface temperature of a static and spherical body in steady state is determined by considering the gravitational temperature drop (GTD). For this aim, a body consisting of black body radiation (BBR) only is considered. Thus, it is assumed that body has minimum mass and minimum GTD. By solving the Oppenheimer–Volkoff equation, density distribution of self-gravitating thermal photon sphere with infinite radius is obtained. Surface temperature is defined as the temperature at distance of R from centre of this photon sphere. By means of the density-temperature relation of BBR, surface temperature is expressed as a function of central temperature and radius R. Variation of surface temperature with central temperature is examined. It is shown that surface temperature has a maximum for a finite value of central temperature. For this maximum, an analytical expression depending on only the radius is obtained. Since a real static and stable body with finite radius has much more mass and much more GTD than their values considered here, obtained maximum constitutes an upper limit for surface temperature of a real body. This limitation on surface temperature also limits the radiative energy lose from a body. It is shown that this limit for radiative energy lose is a constant independently from body radius and central temperature. Variation of the minimum mass with central temperature is also examined. It is seen that the surface temperature and minimum mass approach some limit values, which are less than their maximums, by making damping oscillations when central temperature goes to infinity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3