Affiliation:
1. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Abstract
There ought to exist a reformulation of quantum mechanics which does not refer to an external classical space–time manifold. Such a reformulation can be achieved using the language of noncommutative differential geometry. A consequence which follows is that the "weakly quantum, strongly gravitational" dynamics of a relativistic particle whose mass is much greater than the Planck mass is dual to the "strongly quantum, weakly gravitational" dynamics of another particle whose mass is much less than the Planck mass. The masses of the two particles are inversely related to each other, and the product of their masses is equal to the square of the Planck mass. This duality explains the observed value of the cosmological constant, and also why this value is nonzero but extremely small in Planck units.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献