Geometrical optics for scalar, electromagnetic and gravitational waves on curved spacetime

Author:

Dolan Sam R.1ORCID

Affiliation:

1. Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

Abstract

The geometrical-optics expansion reduces the problem of solving wave equations to one of the solving transport equations along rays. Here, we consider scalar, electromagnetic and gravitational waves propagating on a curved spacetime in general relativity. We show that each is governed by a wave equation with the same principal part. It follows that: each wave propagates at the speed of light along rays (null generators of hypersurfaces of constant phase); the square of the wave amplitude varies in inverse proportion to the cross-section of the beam; and the polarization is parallel-propagated along the ray (the Skrotskii/Rytov effect). We show that the optical scalars for a beam, and various Newman–Penrose scalars describing a parallel-propagated null tetrad, can be found by solving transport equations in a second-order formulation. Unlike the Sachs equations, this formulation makes it straightforward to find such scalars beyond the first conjugate point of a congruence, where neighboring rays cross, and the scalars diverge. We discuss differential precession across the beam which leads to a modified phase in the geometrical-optics expansion.

Funder

Engineering and Physical Sciences Research Council

Science and Technology Facilities Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin Hall effects in the sky;Classical and Quantum Gravity;2023-07-07

2. Light propagation in Kerr spacetime;The European Physical Journal Plus;2023-03-04

3. Gravitational Spin Hall Effect in Curves Spacetimes;The 2nd Electronic Conference on Universe;2023-02-17

4. Covariant formulation of spin optics for electromagnetic waves;Applied Physics B;2022-12-10

5. Spin Optics for Gravitational Waves;Astronomy;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3